Razorbill Instruments technology used on UK ATC satelite demonstrator

Razorbill Instruments worked with space engineers based in Edinburgh to enable tiny, toaster-sized ‘nanosatellites’ to collect crisp images of the surface of the Earth. Razorbill Instruments, a company developing products that control and measure ultraprecise movement on a nanoscale has collaborated with the UK Astronomy Technology Centre (UK ATC), part of the Science and Technology Facilities Council (STFC). Razorbill’s tech – a compact high precision sensor – aligns the mirrors on UK ATC’s HighRes nanosatellite to within an error smaller than a hundredth of the width of a human hair, when they unfold in space.

Dr Alex Ward, managing director at Razorbill Instruments, says “Nanosatellites could help scientists more accurately monitor the Earth, giving us unprecedented up-to-date views of what’s happening on our planet – including the effects of climate change.
“The Earth Observation data that is possible to collect from small satellites,” continues Alex, “could be vital in understanding the damage being done to our rainforests, providing pin-pointed relief to disaster areas, as well as providing vital insights to agriculture and logistics sectors.”

Started whilst its three founders were studying and working at St Andrew’s University, Razorbill Instruments is now 5 years old and the company’s products, which are designed and made in Scotland are being used around the world from Canada to South-Korea.

Now based at the Higgs Centre for Innovation, an ‘incubator’ hub for high tech start-ups at Royal Observatory Edinburgh, the company has maximised the opportunity to rub shoulders with the engineers from the UK ATC, who are based on the same site.
The UK ATC had been designing a ‘nanosatellite’: a tiny, toaster-sized satellite that is much cheaper and more environmentally friendly than a conventional satellite. These miniature spacecraft cost less than the cost of a luxury car to launch but can do the job of a traditional satellite that might cost in the region of a hundred million pounds.

These nifty nanosatellites, however, have one particular limitation. Because they are so small, they do not collect as much light, and produce quite blurry images. A satellite where the mirrors were folded for launch and unfurled in space, like the petals of a flower, could collect much more light and help produce sharper images. This solution would keep all the advantages of a nanosatellite while limiting the disadvantages. It was with this aim that the UK ATC developed HighRes.

To make a focussed image, however, these fold-out mirrors would need to be aligned to each other with almost unimaginable precision: after a violently bumpy rocket ride and automatically folding out in space, the mirrors would need to be aligned with an error smaller than a hundredth of the width of a human air. At the time, the only commercially available sensors that could measure this level of alignment were too bulky and consumed too much power to be used on such a small satellite.

Alex says “At Razorbill, we had already been playing around with an idea for a compact high precision sensor such as this, so it made perfect sense to join forces with the UK ATC engineers on this project. What is tremendously exciting is that future generations of this satellite, based on the UK ATC design, with Razorbill Instruments sensors, could change what we think is possible with a small satellite.”

Razorbill Instruments carried out the project to develop custom sensors for this, and similar satellites was partly funded by Scottish Enterprise, a government body that supports innovative companies in Scotland with additional funding from the European Regional Development Fund.

“For innovation to happen, the important thing is to get bright people in the same room having conversations about the projects they’re passionate about. We were very impressed with what the UK ATC engineers had achieved and it was exciting that Razorbill Instruments could offer one of the final pieces of the jigsaw puzzle to help them realize the huge potential of their nanosatellite. This project is a great example of the great outcomes that can be sparked by a chance encounter over a cup of tea,” concludes Alex.

Dr Noah Schwartz UK ATC (left) developed the control system allowing the mirrors to focus. Tom Barraclough, Razorbill Instruments (right) holds the tiny sensors he helped develop that allow the positions of the satellite mirrors to be measured when they are deployed in space. Far left, the Satellite ‘HighRes’ that was the subject of this collaboration. PHOTO CREDIT: UK ATC

Easier integration with an Attocube positioner

Sometimes it is necessary to move a stress or strain cell around inside a cryostat, for example for optics alignment or to bring the sample into range of a scanning probe. To do this it is necessary to use a cryogenic nanopositioner, and one of the most commonly used types is that manufactured by Attocube. To make it easier for a customer to incorporate a Razorbill CS100 into their set-up, we can now provide a bracket to fix a CS100 to the top of an Attocube ANPx101 positioner. Likewise, we offer a custom FC100 cell, with a reduced weight to make it compatible with an ANPx101 positioner with a baseplate that can be fixed to the existing screw holes in the Attocube positioner.

Left: The CS100 titanium  mounting bracket, to mount the device easily on top of an Attocube positioner

Right: An FC100 with the lightweight modification reduces its weight below 80g to allow it to be moved with an Attocube positioner. Its base plate will mate with an Attocube positioner.

Razorbill Instruments turns 5!

Unbelievably, Razorbill Instruments reached the incredible milestone of 5 years old today! Many thanks to our customers and supporters who helped us get this far. Also a big thank you to everyone who helped us eat cake and drink beer to celibrate! Onwards for the next 5 years!

 

7th European High Pressure Research Group Meeting on High Pressure Science and Technology (EHPRG 2019)

Razorbill will be attending this years European Research Group Meeting on High Pressure Science and Technology. This is happening in the first week of September in Prague. Please drop by and say “Hi” if you’re attending. We promise no high pressure sales! It may be a perfect opportunity to check out our brand new product, the CS200T (below)

 

APS March Meeting 2019

Many thanks to everyone who braved the snowstorms to drop by our booth and say hello. We met a lot of interesting people doing some really great science and we’re grateful for all the positive feedback you gave us. Hopefully see you all next year!

Photo (above). Jack, an engineer, trying to do an impression of a salesperson.

Drop in on Razorbill founders Jack and Alex at booth #205 at APS March meeting 2019

We are very pleased to announce that Razorbill founders, Alex and Jack, will be staffing booth #205 at APS March meeting. We will be unveiling and new product and be on hand to answer your technical queries and swapping hints and tips to getting the most out of your strain and stress cells.

Please drop along and say "hi". We'd love to see you and you can admire our 'unique' purple sequined booth table!

 

Looking back on 2018

In the past few months, Razorbill Instruments became 4 years old. We have emerged from the choppy waters of a newly formed company and are secure, growing and continuing our commitment to developing high performance scientific instruments.

Reflecting on the past year we can say that the company has achieved a great deal. We released a new product, the high-performance stress cell, the FC100. Customers bought the cell for the very high forces available in the one-inch package and the ability to precisely measure  the force applied to samples. Many thanks for your patience as we took a little extra time than expected in getting the high volume of devices manufactured and sent out and thank you for patiently giving us the opportunity to resolve some of the early technical hiccups.

Razorbill Instruments also had the pleasure of migrating to a brand-new facility – the Higgs Centre for Innovation, remaining in the beautiful, rainy, City of Edinburgh. The additional space allowed us to add a new R&D engineer to our team who is developing and improving our existing sensor technologies.

There have also been several developments in the past year in the academic world of uniaxial pressure tuning, and it is always very gratifying to see our customers producing high quality scientific publications. After,  previously demonstrating how a CS100 can be used in conjunction with an NMR probe in an RSI paper, researchers at UC Davis, TU Dresden, Ames lab and the University of Minnesota identified some remarkable electronic transitions in BaFe2As2 publishing in Physical Review B. The combination of NMR and uniaxial strain appears to be a very fruitful research vein as many of the same authors were joined by colleagues at the same institutions to publish some additional high-impact results arising from tuning the electronic properties of BaFe2As2 with uniaxial strain in Nature Communications.

It has also been a busy year for our academic partner, Dr Clifford Hicks and his research group at the Max Planck Institute for Chemical Physics of Solids. He has authored numerous publications using novel uniaxial strain devices that have been recently developed in the academic environment (many of which will soon be commercially available from Razorbill Instruments).  Please follow the links to see the full author list whose hard work led to the publications. Dr Hicks published once, twice and then three times in Physical Review B, as well as Physical Review Letters. Most recently he has published in Science  in which he and his colleagues used uniaxial strain in conjunction with high-resolution inelastic x-ray scattering to through light on the complex electronic phases of the high-temperature superconductor YBCO.

It seems like exciting results are appearing on Arxiv every few days, so its looking like uniaxial strain tuning is really going to be an exciting research area to be in 2019 and beyond!

A view of Razorbill Instruments' hilltop home (on a rare sunny day).

New product ships – FC100

There is much rejoicing in the field of strongly correlated electron systems as the first models of our brand-new premium product, the FC100 are being shipped to customers. Many thanks to all our loyal customers who have patiently waited (and are still patiently waiting). Thanks for bearing with us, and we hope to fulfil all outstanding orders in the next few weeks.

The FC100 is a big step up in the field of cryogenic strain tuning. The device packs quite a punch into a 1-inch footprint providing a maximum displacement of ±25 μm at 4K and maximum force of ±90 N at 4K. On top of this, the FC100 has an in-built force sensor (instead of the displacement sensor) which allows the direct measurement of stress on the sample – a more reliable metric than measuring the applied displacement.

Below shows the beautiful FC100 mounted on a modified Quantum design PPMS probe, ready for inserted into a cryostat.

New article published in Nature Communications describes novel magnetic phenomenon

Researchers at the University of California, Davis with collaborators from Institute for Solid State Physics, TU Dresden and Ames Laboratory U.S. DOE have recently reported the observation of an intriguing magnetic phenomenon in the superconductor, BaFe2As2 which has a nematic electronic structure. The researchers were subjecting a sample of the material to uniaxial strain using a Razorbill Instruments CS100 strain cell (see picture) while probing it using NMR.

BaFe2As2 is usually an anti-ferromagnetic material, with the atomic spins of neighbouring atoms alternate between up and down meaning that the spins cancel and resultant material is non-magnetic. Intriguingly, when subjected to strain the atomic spins changed significantly, moving out of the plane of the crystal leading to a strained material that is measurably magnetic. Materials that change their magnetic properties when subjected to strain are very rare but the particularly surprising effect is that an in-plane applied strain can lead to an out of plane magnetic moment.

One of the reasons why the work is so significant is that this is the first measurement that sheds any light on the internal spin structure of the nematic order parameter in an iron-based superconductor.

For more details please see the original paper which was published in Nature Communications or the UC Davis blog post on the work.

 

Image left. Above: A sample of BaFe2As2 is mounted between the sample plates of a Razorbill Instruments CS100 strain cell. Below: As uniaxial strain is applied to the sample, the original in-plane magnetic moments (black arrows)  start to shift out of plane (white arrows).